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Continuously variable survival exponent for random walks with movable partial reflectors
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We study a one-dimensional lattice random walk with an absorbing boundary at the origin and a movable
partial reflector. On encountering the reflector at gjtthe walker is reflectedwith probabilityr) to x—1 and
the reflector is simultaneously pushedxté 1. Iteration of the transition matrix, and asymptotic analysis of the
probability generating function show that the critical exponérgoverning the survival probability varies
continuously between 1/2 and 1 asaries between 0 and 1. Our study suggests a mechanism for nonuniversal
kinetic critical behavior, observed in models with an infinite number of absorbing configurations.
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Random walks find application in virtually every area of transition to turbulencgl2,13, to cite but a few examples.
physics[1-5]. Random walks in the presence of traps orThe connection between absorbing-state phase transitions
absorbing boundaries, and/or reflectors, are much studied asd random walks lies inrcompact directed percolation
models of exciton recombinatidi], diffusion-limited reac- (CDP) [14]. CDP is defined on a discrete space tinxet)
tions[5], and polymer-surface interactiofig]. with time slices corresponding to diagonals of a square lat-

In this Rapid Communication, we study an unbiased rantice, so that the neighbors of sit&,{) at the previous time
dom walk with an absorbing boundary at the origin, and aare x—1t—1) and k+1t—1). Each site is either occupied
movable, partial reflector. At each encounter between walkeor vacant. If ,t—1) hasn occupied neighbors, thex,t) is
and reflector, the latter moves one step to the right, to a  vacant(occupied with probability 1 ifn=0 (2), and is oc-
site not yet visited by the walkgrwhile the walker is re- cupied with probability p if n=1. CDP exhibits an
flected to its previous position with probability Thus the absorbing-state phase transitiorpat 1/2. Consider an initial
reflector hampers the advance of the walker into new terristate of a single occupied site in an otherwise empty lattice.
tory, but does not otherwise influence its motioNote that The boundaries between the occupied regidescended
in the limit r =0 the reflector has no effect, but it does markfrom the initial seed particleand the outer vacant regions
the span of the walk) We are primarily interested in the follow simple random walks, which are unbiasedoi 1/2.
effect of the reflector on the asymptotic scaling properties ofThus thelength Xt) of the occupied region, being the dis-
the walk. tance between two random walks, is also a random walk,

The process defined above admits various physical intewith an absorbing boundary at the origin. Fpr<1/2
pretations. One is in terms of adlayer growth, with deposition(>1/2), X(t) is attracted tdrepelled by the origin. Forp
and evaporation at the edge of the adlagleut not in the  =1/2, X(t) is unbiased, and well-known results for random
bulk). The substrate adsorption sites are originally in a “non-walks[1,4,15 imply that the survival probability decays for
activated” state, with a low sticking probability for incident long times~t~¢, with §=1/2.
molecules, but after a first adsorption attertgita step edge The motivation for introducing mobile reflectors in CDP
the substrate site becomes activated, with a high stickingand thus in the simple random walk studied heseises
probability. Biological interpretations are also possible, e.g.from the puzzling behavior of models that can become
of the advance of a bacterial colony in a growth medium trapped in one of aimfinite number of absorbing configura-
with a preliminary contact facilitating expansion into new tions (INAC) [16—-18. Anomalies in critical spreading for
regions, or, similarly, the spread of a political viewpoint in an INAC, such as continuously variable critical exponents, have
initially skeptical population. Our results are of interest as arbeen traced to a long memory in the dynamics of the order
example of nonuniversalitya continuously variable critical parameterp, due to coupling to an auxiliary field that re-
exponentin a model that allows an exact asymptotic analy-mains frozen in regions whege=0 [18,19. INAC appears
sis. to be particularly relevant to the transition to spatiotemporal

A further motivation for our study is provided by chaos, as shown in a recent study of a coupled-map lattice
absorbing-state phase transitions, an area of great current iwith “laminar” and “turbulent” states, which revealed con-
terest in nonequilibrium statistical physif8,9], in which a  tinuously variable spreading exponef2g).
many-particle system, such as directed percolation, becomes Grassberger, Chatand Roussea(GCR) [21] proposed
trapped in a configuration allowing no further evolution. that spreading in systems with INAC could be understood by
Continuous transitions to an absorbing state have been istudying a model with aniqueabsorbing configuration, but
voked in models of epidemidslQ], catalysis[11], and the in which the spread of activity to previously inactive regions

is hamperedor facilitated. Our model represents a two-fold

simplification of the GCR model: first, the appearance of
*Electronic address: dickman@cedro.fisica.ufmg.br inactive sites within a string of active ones is prohibited
"Electronic address: benavraham@clarkson.edu (analogous to going from DP to the more restrictive CDP
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proces§ second, we study a single random walker rather A
than the pair needed to describe C[2B]. We believe, none- R y
theless, that our model captures the essential physics under- pr
lying anomalous critical behavior in models with INAC. B . A
Continuously variable exponents have been found in DP and lp, /P
directed self-avoiding walk24], and in CDF{25] confined 12 12
to fixed parabolic geometries. - <>
We study an unbiased, discrete-time random walk on the
nonnegative integers;=0,1,2 ..., with x=0 absorbing.
Initially the walker is atxq=1 and the reflector, whose po- ~
sition we denote byRr;, is atRy=2. Each time the walker
steps to the site occupied by the reflector, it is reflected back X
to R— 1 with probabilityr (and remains aR with probability L1111 1 1,
1-r), while the reflector moves$with probability 1) to R
+1. Evidently the procesg; is non-Markovian, since the
transition probability into a given site depends on whether it , . . A
has been visited before. We can transform the model to a Dwefme the ggngratlng funct|(3n I?()l(,y,z)
Markov process by enlarging the state space to include thg Z:-0Z P(X,y,t) (and similarly forD, etc). P satisfies
reflector position; it is convenient to introduce the variable

FIG. 1. Transition probabilities in th&,y) plane.

y;=R;— 1 for this purpose. The process,Y) is restricted to z 'P(x,y)=3P(x—1y)+3P(x+1y),
the wedge betweer=0 (absorbing andx=y, with transi- _ (4)
tions fromy to y+ 1 allowed only from the diagonal=Yy. x=12,...y=2; y=3.

At this point it is useful to include a further generalization of
our model, by assigning a probability for the walker to
jump to the right(andq’'=1—p’ to jump to the left when
on the diagonal; these transition probabilities are summa-
rized in Fig. 1. Forp’<1/2 the walker experiences an addi-
tional impediment to visiting new territory, while fgu’ (1 P LA , A A
—r)>1/2 the “reflector” effectively becomes an accelerator, 2 P(Y~1¥)=2P(y=2y)+p'rD(y—1)+(1-p")D(y),

(we drop the argumerztfor brevity), subject to the boundary
conditions

P(0y)=0, (5)

drawing the walker forward to a previously unvisited site. (6)
The nonzero transition probabilities for the Markov chain 1A LA . .
are: z " D(y)=3zP(y=1y)+p'(1-r)D(y—-1). (V)
W[(X,Y)—(x=1y)]=1/2, x=1,...y—1, The solution of Eqs(4) and(5) is

WL(Y.y)— (y.y+1)]=p'r, Px,y)=C(y)(N —\*); N.i=z'x{z -1, (8

WI(Y,y)—(y+1y+1)]=p'(1-1) @ with C(y) yet to be determined. Noting that, =\ 1=\,
we definex(x)=\*—\"%; thus P(x,y)=C(y)\(x). Note
W[ (y, —1y)]=1-p’. also the recurrence relation for integet A(x—1)

Ly = =1yl b -2z ]\ (X)+\(x+1)=0.

The probabilityP(x,y,t) follows the master equation From Eq.(7) we find
—1lp(y— 1 R R Y ' a
P(x,y,t+1)=3P(x=1y,t) +3P(x+1y,t), " By)=w’ 20(2)+1z0¥ S o V' B(Yy —1y'),
=3

x=12,...y—2;, y=3, ’ 9

w=p'(1-r)z.
with P(0,y,t)=0, representing the absorbing boundarx at A A A
=0. Letting D(y,t)=P(y,y,t), the boundary conditions |t follows that D(y)—wD(y—1)=(z2/2)C(y)A(y—1).

along the diagonal are Therefore, subtracting from E¢5) o times the correspond-
) ing equation fory—1, and using the recursion relation for
P(y=1yt+1)=3P(y—2y,t)+p'rD(y—11t) A(x), we find
+(1—-p")D(y,1), 3 ~
(1=p)bly.1 9 Sw) _ My=2+A-DAy=D o
D(y,t+1)=2P(y—1y,t)+p’(1—r)D(y—11), Cly-1) ~ (p'—=HAMy—D+3(y+1)

for y=3. Fory=1, 2 the evolution equations depend on thewhich, noting thatC(2)=P(1,2)/\(1), provides the com-
initial condition; hereP(x,y,0)= 8y 16y 1 [26]. plete solution for the probability generating function.
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CONTINUOUSLY VARIABLE SURVIVAL EXPONENT FOR.. ..

To determine the survival probability S(t)
=E;°:02§iOP(x,y,t) ast—o, we analyze the singular be-
havior of $(z) as z—1. In this limit A\=1+ 2e+ O(e),
wheree=1—z, and we find the dominant term to p22]

. 1 “
So— 23 C(y)[N(y/2)]%,

V2(1—2) vy

which converges foz<1. Note that\ (n)~2n+/2e for ne
<1, while in the opposite limitn(n)~\". For ne<1 we

may thus use the— 1 limiting expression folC(n), that is,

(11)

&)= P(1,2 T(2+1/p') T(y-r) 12
o 2i—2 T(2—1) T(y+1p)

We then approximate the summand in Etfl) by
2n%Cq(Nn)e, ne<1,

n— ~ (13
2N2Cy(N)ea” NA""N ne>1,

whereN=1/\/e is rounded to an integer, and
r+(1—r)A
(1-r) (14)

a= .
P (p'—1/2N+(1/2)A3

SinceS and F(z2)==,_,f, have the same radius of con-
vergence and lim &:(n)[)\(n/2)]2/fn is finite, an Abelian

theorem implies that the singular behaviorSik the same as
that of F(z)/\Je [4]. Write F(2)/\e=2€"2=N_n?Co(n)
+2€YN?Cy(N)Z5_ . 1(Aa)"~N. We approximate the first
sum by an integral; usinGo(n) ~ e~ ¥2n~" " we then find
that the first term~ e+ =32 The same holds for the
second term when we note that-hA\~ €2 and Co(N)
~e A= P)2 Thus §~(1-2)°"! (plus less singular
term9 as z—1, whered=(r+1/p’—1)/2. Finally, noting
that for largen, the coefficient ofz" in (1—2)° ! is
n~°/T'(1- 8), we have that the survival probability decays
asymptotically ~t~?; in particular, for p’=1/2 we have
S(t)~t~ ("2 Note also that the larggr’ is, the slower the
decay of the survival probability, as expected.

While the amplitude of the leading term B(t) can be
evaluated exactly fop’=1/2 andr=0 or 1[22], we have

not found a closed-form expression in the general case. Nu-

merical evaluation of the exact expression ®does, how-

ever, lead to an amplitude in perfect agreement with that

found in the transition matrix analysis.

We turn now to results obtained via numerical iteration of
the transition matrix defined in E@2). We studied the pro-
cess to a maximum time of up tox3L0°, quite sufficient to

observe asymptotic behavior. In Fig. 2 we show the survival

probability forp’ =1/2 and various values of In each case
there is a power-law decay, with the decay exporewnary-
ing continuously withr. [The plateaus ir8(t) at short times
reflect that forr =0 the walker can only reach the origin on
odd-numbered steps. Similarly, for=1 the walker cannot
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FIG. 2. Survival probability versus time for random walk with a
movable partial reflectorp’=1/2. Reflection probability(top to
bottom r=0,0.1,...,1.

reach the origin on the third stepWVe verify that the mean
position (x)~tY? (and that(x?)~t; the averages are over
surviving walkg independent of. The amplitudes for the
displacement and its second moment do decrease with in-
creasingr.

To determine the decay exponent precisely, we study the
local sloped(t), given by a least-squares linear fit to thesin
data for a set of 11 equally spaced valulgsrements of
0.05 of Int. Plots of §(t) versust ! lead to asymptotict(
—0) values confirmings=(1+r)/2 to better than one part
in 2000. It is possible to improve the analysis further by
determining the leading correction to scaling in an expansion
of the form:S(t)=At™{1—Bt %1+ ...]. Forr=0 we find
A=0.7979,B=0.78, andA;=1.00, in accord with the exact
expansion P(t)=2/(wt)[1—(3/4)t *+ ...]. For r=1
our data yieldA=1.0000(in agreement with the exact re-
sult), B=1.332, andA;=1.00. In these two cases, plotting
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FIG. 3. Local slopes(t) for p’=r=1/2. The inset shows the
same data plotted versug .1/
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8(t) versust 41=t"1, we obtains=0.5000 and 0.999985, two points that bound the active region, as in CDP. But here
respectively. For in the interval[0.1,0.§ we find a much the boundaries of the active region do not follow simple
smaller correction to scaling exponent; =0.54, while for ~ random walks: their dynamics involves a variable step size
r=0.9, A;~0.62. Plottings(t) versust 2t (see Fig. 3 we (due to gaps in the distribution of active siteand a signifi-
obtain exponents that agree with the theoretical value to beant memory(the step-size distribution depends on the his-
ter than one part in 10", The attractive simplification, tory of the previous step directionsit seems reasonable,
A,=1/2forr#0, 1, yields essentially the same values dpr nevertheless, to expect that varying the probability for ad-

and is in fact to be expected, given that generic corrections t¥ancing into virgin territory will change the scaling of the
§ should bex(1—2)°~ ™2 (m=1,2 ) survival probability, just as observed here. A detailed inves-

The case of compact directed percolation is somewhaqgation of this issue is a high priority for future work.

more complicated than the random-walk problem analyzed In summary, we have uncovered the rather remarkable

above, as we must now keep track of three variables, viz. thBroperty of a continuously varying critical exponent govem-

distanceX between the two walkers, and the respective dis"Y the survival probability of a random walk with an ab-

tances between the walkers and the associated refl¢2&jrs sorbing boundary, in the presence of a movable partial re-

Simulation results for CDP with movable partial reflectorsﬂigtgrgtaongirn rensour!tjni\fgrgsi(?sst rzr; d?r:teirr?ﬁ\é(ejelzpv?/irt%agr: "2(_)
again shows varying continuously withr, but over a some- 9 P 9

what wider range: for=1, 5=1.15§3). finite number of absorbing configurations.
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