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Continuously variable survival exponent for random walks with movable partial reflectors
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We study a one-dimensional lattice random walk with an absorbing boundary at the origin and a movable
partial reflector. On encountering the reflector at sitex, the walker is reflected~with probability r ) to x21 and
the reflector is simultaneously pushed tox11. Iteration of the transition matrix, and asymptotic analysis of the
probability generating function show that the critical exponentd governing the survival probability varies
continuously between 1/2 and 1 asr varies between 0 and 1. Our study suggests a mechanism for nonuniversal
kinetic critical behavior, observed in models with an infinite number of absorbing configurations.
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Random walks find application in virtually every area
physics @1–5#. Random walks in the presence of traps
absorbing boundaries, and/or reflectors, are much studie
models of exciton recombination@6#, diffusion-limited reac-
tions @5#, and polymer-surface interactions@7#.

In this Rapid Communication, we study an unbiased r
dom walk with an absorbing boundary at the origin, and
movable, partial reflector. At each encounter between wa
and reflector, the latter moves one step to the right~i.e., to a
site not yet visited by the walker!, while the walker is re-
flected to its previous position with probabilityr. Thus the
reflector hampers the advance of the walker into new te
tory, but does not otherwise influence its motion.~Note that
in the limit r 50 the reflector has no effect, but it does ma
the span of the walk.! We are primarily interested in th
effect of the reflector on the asymptotic scaling properties
the walk.

The process defined above admits various physical in
pretations. One is in terms of adlayer growth, with deposit
and evaporation at the edge of the adlayer~but not in the
bulk!. The substrate adsorption sites are originally in a ‘‘no
activated’’ state, with a low sticking probability for inciden
molecules, but after a first adsorption attempt~at a step edge!
the substrate site becomes activated, with a high stick
probability. Biological interpretations are also possible, e
of the advance of a bacterial colony in a growth mediu
with a preliminary contact facilitating expansion into ne
regions, or, similarly, the spread of a political viewpoint in
initially skeptical population. Our results are of interest as
example of nonuniversality~a continuously variable critica
exponent! in a model that allows an exact asymptotic ana
sis.

A further motivation for our study is provided b
absorbing-state phase transitions, an area of great curren
terest in nonequilibrium statistical physics@8,9#, in which a
many-particle system, such as directed percolation, beco
trapped in a configuration allowing no further evolutio
Continuous transitions to an absorbing state have been
voked in models of epidemics@10#, catalysis@11#, and the
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transition to turbulence@12,13#, to cite but a few examples
The connection between absorbing-state phase transi
and random walks lies incompact directed percolation
~CDP! @14#. CDP is defined on a discrete space time (x,t)
with time slices corresponding to diagonals of a square
tice, so that the neighbors of site (x,t) at the previous time
are (x21,t21) and (x11,t21). Each site is either occupie
or vacant. If (x,t21) hasn occupied neighbors, then (x,t) is
vacant~occupied! with probability 1 if n50 ~2!, and is oc-
cupied with probability p if n51. CDP exhibits an
absorbing-state phase transition atp51/2. Consider an initial
state of a single occupied site in an otherwise empty latt
The boundaries between the occupied region~descended
from the initial seed particle! and the outer vacant region
follow simple random walks, which are unbiased ifp51/2.
Thus thelength X(t) of the occupied region, being the dis
tance between two random walks, is also a random w
with an absorbing boundary at the origin. Forp,1/2
(.1/2), X(t) is attracted to~repelled by! the origin. Forp
51/2, X(t) is unbiased, and well-known results for rando
walks @1,4,15# imply that the survival probability decays fo
long times;t2d, with d51/2.

The motivation for introducing mobile reflectors in CD
~and thus in the simple random walk studied here! arises
from the puzzling behavior of models that can beco
trapped in one of aninfinite number of absorbing configura
tions ~INAC! @16–18#. Anomalies in critical spreading fo
INAC, such as continuously variable critical exponents, ha
been traced to a long memory in the dynamics of the or
parameter,r, due to coupling to an auxiliary field that re
mains frozen in regions wherer50 @18,19#. INAC appears
to be particularly relevant to the transition to spatiotempo
chaos, as shown in a recent study of a coupled-map la
with ‘‘laminar’’ and ‘‘turbulent’’ states, which revealed con
tinuously variable spreading exponents@20#.

Grassberger, Chate´, and Rousseau~GCR! @21# proposed
that spreading in systems with INAC could be understood
studying a model with auniqueabsorbing configuration, bu
in which the spread of activity to previously inactive regio
is hampered~or facilitated!. Our model represents a two-fol
simplification of the GCR model: first, the appearance
inactive sites within a string of active ones is prohibit
~analogous to going from DP to the more restrictive CD
©2001 The American Physical Society02-1
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process!; second, we study a single random walker rath
than the pair needed to describe CDP@23#. We believe, none-
theless, that our model captures the essential physics un
lying anomalous critical behavior in models with INAC
Continuously variable exponents have been found in DP
directed self-avoiding walks@24#, and in CDP@25# confined
to fixedparabolic geometries.

We study an unbiased, discrete-time random walk on
nonnegative integers,xt50,1,2, . . . , with x50 absorbing.
Initially the walker is atx051 and the reflector, whose po
sition we denote byRt , is at R052. Each time the walker
steps to the site occupied by the reflector, it is reflected b
to R21 with probabilityr ~and remains atR with probability
12r ), while the reflector moves~with probability 1! to R
11. Evidently the processxt is non-Markovian, since the
transition probability into a given site depends on whethe
has been visited before. We can transform the model t
Markov process by enlarging the state space to include
reflector position; it is convenient to introduce the variab
yt5Rt21 for this purpose. The process (x,y) is restricted to
the wedge betweenx50 ~absorbing! andx5y, with transi-
tions from y to y11 allowed only from the diagonalx5y.
At this point it is useful to include a further generalization
our model, by assigning a probabilityp8 for the walker to
jump to the right~andq8512p8 to jump to the left! when
on the diagonal; these transition probabilities are sum
rized in Fig. 1. Forp8,1/2 the walker experiences an add
tional impediment to visiting new territory, while forp8(1
2r ).1/2 the ‘‘reflector’’ effectively becomes an accelerato
drawing the walker forward to a previously unvisited site

The nonzero transition probabilities for the Markov cha
are:

W@~x,y!→~x61,y!#51/2, x51, . . . ,y21,

W@~y,y!→~y,y11!#5p8r ,
~1!

W@~y,y!→~y11,y11!#5p8~12r !,

W@~y,y!→~y21,y!#512p8.

The probabilityP(x,y,t) follows the master equation

P~x,y,t11!5 1
2 P~x21,y,t !1 1

2 P~x11,y,t !,
~2!

x51,2, . . . ,y22; y>3,

with P(0,y,t)50, representing the absorbing boundary ax
50. Letting D(y,t)[P(y,y,t), the boundary conditions
along the diagonal are

P~y21,y,t11!5 1
2 P~y22,y,t !1p8rD ~y21,t !

1~12p8!D~y,t !, ~3!

D~y,t11!5 1
2 P~y21,y,t !1p8~12r !D~y21,t !,

for y>3. Fory51, 2 the evolution equations depend on t
initial condition; hereP(x,y,0)5dx,1dy,1 @26#.
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Define the generating function P̂(x,y,z)
5( t50

` ztP(x,y,t) ~and similarly forD, etc.!. P̂ satisfies

z21P̂~x,y!5 1
2 P̂~x21,y!1 1

2 P̂~x11,y!,
~4!

x51,2, . . . ,y22; y>3.

~we drop the argumentz for brevity!, subject to the boundary
conditions

P̂~0,y!50, ~5!

z21P̂~y21,y!5 1
2 P̂~y22,y!1p8rD̂ ~y21!1~12p8!D̂~y!,

~6!

z21D̂~y!5 1
2 P̂~y21,y!1p8~12r !D̂~y21!. ~7!

The solution of Eqs.~4! and ~5! is

P̂~x,y!5Ĉ~y!~l1
x 2l2

x !; l65z216Az2221, ~8!

with Ĉ(y) yet to be determined. Noting thatl15l2
21[l,

we definel(x)[lx2l2x; thus P̂(x,y)5Ĉ(y)l(x). Note
also the recurrence relation for integerx: l(x21)
22z21l(x)1l(x11)50.

From Eq.~7! we find

D̂~y!5vy22D̂~2!1 1
2 zvy (

y853

y

v2y8P̂~y821,y8!,

~9!
v5p8~12r !z.

It follows that D̂(y)2vD̂(y21)5(z/2)Ĉ(y)l(y21).
Therefore, subtracting from Eq.~5! v times the correspond
ing equation fory21, and using the recursion relation fo
l(x), we find

Ĉ~y!

Ĉ~y21!
5p8

rl~y22!1~12r !l~y21!

~p82 1
2 !l~y21!1 1

2 l~y11!
, ~10!

which, noting thatĈ(2)5 P̂(1,2)/l(1), provides the com-
plete solution for the probability generating function.

FIG. 1. Transition probabilities in the~x,y! plane.
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To determine the survival probability S(t)
5(y50

` (x50
y P(x,y,t) as t→`, we analyze the singular be

havior of Ŝ(z) as z→1. In this limit l511A2e1O(e),
wheree512z, and we find the dominant term to be@22#

Ŝ;
1

A2~12z!
(
y53

`

Ĉ~y!@l~y/2!#2, ~11!

which converges forz,1. Note thatl(n);2nA2e for ne
!1, while in the opposite limitl(n);ln. For ne!1 we
may thus use thez→1 limiting expression forĈ(n), that is,

Ĉ0~y!5
P̂~1,2!

2A2~12z!

G~211/p8!

G~22r !

G~y2r !

G~y11/p8!
. ~12!

We then approximate the summand in Eq.~11! by

f n5H 2n2Ĉ0~n!e, ne<1,

2N2Ĉ0~N!ean2Nln2N, ne.1,
~13!

whereN51/Ae is rounded to an integer, and

a5p8
r 1~12r !l

~p821/2!l1~1/2!l3
. ~14!

SinceŜ andF(z)[(n50
` f n have the same radius of con

vergence and lim
n→`

Ĉ(n)@l(n/2)#2/ f n is finite, an Abelian

theorem implies that the singular behavior ofŜ is the same as
that of F(z)/Ae @4#. Write F(z)/Ae52e1/2(n50

N n2Ĉ0(n)

12e1/2N2Ĉ0(N)(n5N11
` (la)n2N. We approximate the firs

sum by an integral; usingĈ0(n);e21/2n2r 21/p8 we then find
that the first term;e (r 11/p823)/2. The same holds for the
second term when we note that 12al;e1/2 and Ĉ0(N)
;e2(12r 21/p8)/2. Thus Ŝ;(12z)d21 ~plus less singular
terms! as z→1, whered5(r 11/p821)/2. Finally, noting
that for large n, the coefficient of zn in (12z)d21 is
n2d/G(12d), we have that the survival probability deca
asymptotically ;t2d; in particular, for p851/2 we have
S(t);t2(11r )/2. Note also that the largerp8 is, the slower the
decay of the survival probability, as expected.

While the amplitude of the leading term inS(t) can be
evaluated exactly forp851/2 andr 50 or 1 @22#, we have
not found a closed-form expression in the general case.
merical evaluation of the exact expression forŜ does, how-
ever, lead to an amplitude in perfect agreement with t
found in the transition matrix analysis.

We turn now to results obtained via numerical iteration
the transition matrix defined in Eq.~2!. We studied the pro-
cess to a maximum time of up to 33105, quite sufficient to
observe asymptotic behavior. In Fig. 2 we show the surv
probability for p851/2 and various values ofr. In each case
there is a power-law decay, with the decay exponentd vary-
ing continuously withr. @The plateaus inS(t) at short times
reflect that forr 50 the walker can only reach the origin o
odd-numbered steps. Similarly, forr 51 the walker cannot
02010
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reach the origin on the third step#. We verify that the mean
position ^xt&;t1/2 ~and that^xt

2&;t; the averages are ove
surviving walks! independent ofr. The amplitudes for the
displacement and its second moment do decrease with
creasingr.

To determine the decay exponent precisely, we study
local sloped(t), given by a least-squares linear fit to the lnS
data for a set of 11 equally spaced values~increments of
0.05! of ln t. Plots ofd(t) versust21 lead to asymptotic (t
→`) values confirmingd5(11r )/2 to better than one par
in 2000. It is possible to improve the analysis further
determining the leading correction to scaling in an expans
of the form:S(t).At2d@12Bt2D11•••#. For r 50 we find
A50.7979,B50.78, andD151.00, in accord with the exac
expansion P(t).A2/(pt)@12(3/4)t211 . . . #. For r 51
our data yieldA51.0000 ~in agreement with the exact re
sult!, B51.332, andD151.00. In these two cases, plottin

FIG. 3. Local sloped(t) for p85r 51/2. The inset shows the
same data plotted versus 1/t.

FIG. 2. Survival probability versus time for random walk with
movable partial reflector,p851/2. Reflection probability~top to
bottom! r 50,0.1, . . . ,1.
2-3
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d(t) versust2D15t21, we obtaind50.5000 and 0.999985
respectively. Forr in the interval@0.1,0.8# we find a much
smaller correction to scaling exponent,D1.0.54, while for
r 50.9, D1.0.62. Plottingd(t) versust2D1 ~see Fig. 3!, we
obtain exponents that agree with the theoretical value to
ter than one part in 23104. The attractive simplification
D151/2 for rÞ0, 1, yields essentially the same values ford,
and is in fact to be expected, given that generic correction
Ŝ should be}(12z)d211m/2 (m51,2, . . . ).

The case of compact directed percolation is somew
more complicated than the random-walk problem analy
above, as we must now keep track of three variables, viz.,
distanceX between the two walkers, and the respective d
tances between the walkers and the associated reflectors@23#.
Simulation results for CDP with movable partial reflecto
again showd varying continuously withr, but over a some-
what wider range: forr 51, d51.158(3).

In one-dimensional spreading models~contact process
@10#, pair contact process@16#, etc.! the survival and spread
of activity may again be described in terms of the position
nd
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two points that bound the active region, as in CDP. But h
the boundaries of the active region do not follow simp
random walks: their dynamics involves a variable step s
~due to gaps in the distribution of active sites!, and a signifi-
cant memory~the step-size distribution depends on the h
tory of the previous step directions!. It seems reasonable
nevertheless, to expect that varying the probability for a
vancing into virgin territory will change the scaling of th
survival probability, just as observed here. A detailed inv
tigation of this issue is a high priority for future work.

In summary, we have uncovered the rather remarka
property of a continuously varying critical exponent gover
ing the survival probability of a random walk with an ab
sorbing boundary, in the presence of a movable partial
flector. Our results suggest an alternative approach
understanding nonuniversal spreading in models with an
finite number of absorbing configurations.
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